Differential transcription of the tcpPH operon confers biotype-specific control of the Vibrio cholerae ToxR virulence regulon.

نویسندگان

  • Y M Murley
  • P A Carroll
  • K Skorupski
  • R K Taylor
  • S B Calderwood
چکیده

Epidemic strains of Vibrio cholerae O1 are divided into two biotypes, classical and El Tor. In both biotypes, regulation of virulence gene expression depends on a cascade in which ToxR activates expression of ToxT, and ToxT activates expression of cholera toxin and other virulence genes. In the classical biotype, maximal expression of this ToxR regulon in vitro occurs at 30 degrees C at pH 6.5 (ToxR-inducing conditions), whereas in the El Tor biotype, production of these virulence genes only occurs under very limited conditions and not in response to temperature and pH; this difference between biotypes is mediated at the level of toxT transcription. In the classical biotype, two other proteins, TcpP and TcpH, are needed for maximal toxT transcription. Transcription of tcpPH in the classical biotype is regulated by pH and temperature independently of ToxR or ToxT, suggesting that TcpP and TcpH couple environmental signals to transcription of toxT. In this study, we show a near absence of tcpPH message in the El Tor biotype under ToxR-inducing conditions of temperature and pH. However, once expressed, El Tor TcpP and TcpH appear to be as effective as classical TcpP and TcpH in activating toxT transcription. These results suggest that differences in regulation of virulence gene expression between the biotypes of V. cholerae primarily result from differences in expression of tcpPH message in response to environmental signals. We present an updated model for control of the ToxR virulence regulon in V. cholerae.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains.

Co-ordinate expression of genes associated with pathogenicity in Vibrio cholerae requires two transcription activators, ToxR and ToxT. Work carried out to date suggests that ToxR activates transcription of the toxT gene and that ToxT directly activates transcription of several genes whose products play a role in colonization or CT production by V. cholerae. Previous work also suggests that ToxR...

متن کامل

Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae.

We evaluated a spontaneous mutant of Vibrio cholerae, which was avirulent in an infant mouse and had reduced expression of cholera toxin and TcpA in response to environmental signals. The toxR, toxS and toxT genes in the mutant were normal, but transcription of toxT was absent. A plasmid expressing wild-type tcpP and tcpH complemented the mutant. The mutation resulted from a frameshift in a str...

متن کامل

A systems biology approach to modeling vibrio cholerae gene expression under virulence-inducing conditions.

Vibrio cholerae is a Gram-negative bacillus that is the causative agent of cholera. Pathogenesis in vivo occurs through a series of spatiotemporally controlled events under the control of a gene cascade termed the ToxR regulon. Major genes in the ToxR regulon include the master regulators toxRS and tcpPH, the downstream regulator toxT, and virulence factors, the ctxAB and tcpA operons. Our curr...

متن کامل

ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients.

Toxigenic Vibrio cholerae cause cholera, a severe diarrheal disease responsible for significant morbidity and mortality worldwide. Two determinants, cholera enterotoxin (CT) and toxin coregulated pilus (TCP) are critical factors responsible for this organism's virulence. The genes for these virulence determinants belong to a network of genes (the ToxR regulon) whose expression is modulated by t...

متن کامل

Modulation of expression of the ToxR regulon in Vibrio cholerae by a member of the two-component family of response regulators.

The ToxRS system in Vibrio cholerae plays a central role in the modulation of virulence gene expression in response to environmental stimuli. An integration of multiple signalling inputs mediated by ToxR, -S, and -T controls virulence gene expression leading to cholera toxin (CT) production. Recently, we identified a new virulence locus, varA (virulence associated regulator), in classical V. ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 67 10  شماره 

صفحات  -

تاریخ انتشار 1999